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INTRODUCTION

The gravitational field of a planet may be estimated
by reducing Doppler data between an orbiting satellite and an
earth-based tracking station. This procedure has been used to
determine the gravitational fields of the earth and moon. The
gravitational parameter (u) of the planets has been estimated
from ephemeris data. The estimate of y has been improved in
the instance of Mars and Venus by reducing Doppler data from
spacecraft which flew past the planets.

For a satellite orbiting Mars, the dominant errors
in reducing Doppler data are in the size of the astronomical
unit and the planet ephemeris. The procedure described in this

work eliminates these errors by employing a Doppler link between

two orbiting spacecraft. If the central body is non-spherical,
a satellite's orbit plane will osculate with time. A new mathe-
matical procedure is used to determine the gravitational field
from the time varying orbits.

The technique described in this work was developed to
accurately determine a planet's gravitational field. The pro-
cedure may also be used to estimate the gravitational field of
the moon. This may permit determination of the gravitational
anomalies on the backside of the moon.

MATHEMATICAL MODELS

A. Orbit Determination

The relative velocity between two points is expressed

p

mathematically as the vector dot product p . where p is the

vector between the points, |o| is the Euclidean norm of p, and
p is the velocity vector. The orbit determination problem is
to determine a parameter vector X such that the least squares
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For an earth-based tracking station and a Mars orbiter,
the vectors p and p are

\
p =r - R+ D

where R = location of tracking station in an earth-centered frame,

w.
I

-velocity of tracking station in an earth-centered frame,

D = vector from center of Earth to center of Mars,

e X}
1t

relative velocity between center of earth and center
of Mars,
r = location of Mars orbiter in a Mars centered frame, and

r = velocity of Mars orbiter is a Mars centered frame.
'The vectors R, R, D and D are usually assumed to be known.

For two satellites orbiting Mars the vectors p and p are

b=t -1,

where
r, = position of ith satellite in a Mars centered frame
fi = velocity of ith satellite in a Mars centered frame

B. Time Independent Orbits

For time periods on the order of a day the perturbations
on a high altitude satellite (periapsis altitude greater than 1000
km) produced by the non-spherical central body Mars are small.
Thus, the motion of a satellite appears Keplerian.

The position and velocity of a satellite in a Keplerian
orbit are
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cos Q cos{w+f) - sin Q sin(w+f) cos i

r = |r| | sin Q@ cos(w+f) + cos Q sin(w+f) cos

[ ad

(1)

sin (w+f) sin i

-cos Q(sin(w+f) + e sin w) - sin Q cos i (cos(w+f) + e cos w)
r = N| -sin Q(sin(w+f) + e sin w) + cos Q cos i (cos(w+f) + e cos w) (2)
(cos (w+f) + e cos w) sin i

where

a(l—ez)

lrl - l+e cos £

1/2

N=————2-—u
a(l-e)

a = semi-major axis

e = eccentricity

T = time of periapsis passage

i = inclination

w = argument of periapsis

Q = longitude of ascending node

u = gravitational parameter

The in-plane elements, a, e, and 1 are independent of
the coordinate system. The Euler angles i, w, and Q are refer-
enced to the appropriate Mars centered coordinate system. The
relationship between true anomaly f and time is given by Kepler's

equation:
E - e sin E = '\/u—3-(t—r) (3)
a ,
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where
E = sccentric anomaly
and
. V l—e2 sin E
sin £ =I5 Gos B
cos f = SOS E - e

l-e cos E

For earth-based tracking of a Mars satellite the orbit
determination problem is to determine the vectors r and r. For
Keplerian motion this is equivalent to determining the parameter
vector consisting of the six orbital elements a, e, v, i, w, and
2 plus the gravitational parameter yu.

With a Doppler link between two satellites, it is not
possible to solve the orbit determination problem for twelve
~orbital elements, thereby describing the two orbits in some
inertial reference frame. In this problem the matrix of second

2
partial derivatives 3—% is singular and there does not exist a

aX
unique solution to minimize the least squares error. The reason
for this singularity is that the Doppler shift is determined
by the relative orientation of the two satellites and there exist
infinitely many sets of Euler angles yielding the same relative
orientation.

However, the relative positions of two satellites can
be determined with a Doppler link between the two satellites by
using a Mars centered satellite coordinate system. 1In this
system the fundamental reference plane is the satellite orbit
plane of one satellite. The x axis points along the line of ap-
sides towards periapsis. The z axis is parallel to and in the
direction of the satellite angular momentum vector. The y axis
completes a right hand orthogonal system. Thus, the satellite
in the fundamental reference plane has zero for Euler angle values.
In the Mars centered satellite coordinate system, the orbit deter-
mination problem is to determine a, e, and t of the satellite in
the reference plane, the six orbital elements of the other satel-
lite and the gravitational parameter u. This approach is equiva-
lent to fixing the three Euler angles of one satellite and
determining the nine remaining orbital elements and the gravi-
tational parameter u.

C. Time Varying Orbits

If the central body is non-sphérical a satellite's
orbit plane will osculate with time. The non-sphericity of a
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planet can be considered in the orbit determination problem by
modifying the Keplerian analysis presented above. To illustrate
how the non-sphericity problem can be solved using a Doppler
link between two satellites, the central body will be assumed

to have an equatorial bulge.

General perturbation theory has shown that the oblate-
ness effects of a central body on a satellite can be expressed
by a time-varying state-vector of the satellite in terms of the
spherical harmonic components of the gravitational potential of
the central body. The perturbations can be grouped into (i)
secular variations, (ii) long-period variations, and (iii) short-

period variations. Kozai(l) has shown that for the first order
secular perturbation the short-period variations in a, e, 1, and
i can be considered as time independent and, for a coordinate

system having the equatorial plane as the fundamental reference
plane,

2
R
3 e = . -
Q(t) = 9 - 5 ————= J, n(cosi) (t-t ) =a_ - a(t-t ) (4)
o 2 aZ(l_eZ)Z 2 o) o) o
3 Ri - 2 .
w(t) = w, + 70— J, n(4-5sini) (t-t ) = o _+w(t-t]) (5)
°© 4 2(1-e%)2 2 ° © °
where
2 S—
R 2
B=\/i5 |1+ 7 52y 5,2 3sin’t) Ve
a a“(1-e%)

J2 is the value of the second harmonic component the
central body potential.

R, is the equatorial radius of the central body, and

Qo and wo are the initial values at t=to.

For a single satellite with earth-based tracking, the
J, term may be estimated by using the standard Mars centered

equatorial system, the time varying Euler angles Q(t) and w(t),
and by expanding the parameter vector X to consist of a, e, T,
i, Wy Qo’ u and J2. Such a procedure is identical to that used

for earth satellites.
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For a Doppler link between two satellites estimating
Jo is mathematically more complex since relative orientations

are determined using the Mars centered satellite coordinate

system which is not referenced to the planet's equatorial plane.
The equatorial bulge causes both satellite orbits to regress
which produces time variations in all three Euler angles if
neither satellite is orbiting in the equatorial plane. A tech-
nique to estimate the inclinations with respect to the equatorial
plane and the J, term from the time variations in the Euler angles

is described below.

In estimating the J2 term a coordinate system having

as its fundamental reference plane the equatorial plane is the
easiest to use. Since the time variation of the Euler angles
in such a system is independent of Qo and wyr @ Mars centered

satellite equatorial system will be used. In this system the
fundamental reference plane is the Martian equatorial plane.
The X axis points toward the ascending node of the satellite
at time zero. The z axis points in the direction of the
Martian north pole. The y axis completes an orthogonal right
hand system.

Since two satellites are involved, satellite 1 will
be taken as the reference orbit and its orbital elements denoted
by ayr ©ys Ty il’ wl,'and Ql. (Note that in the Mars centered

satellite equatorial system 2, is zero.) The orbital elements

of satellite 2 will be denoted a2, ez, Ty i2, Wy and 92.

Introducing the time variation of the Euler angles
in the satellite equatorial system produces Euler angles il'

w1+wlAt, and Ql

&ZAt, and 92 + ézAt for satellite 2. The corresponding Euler

At for satellite 1 and Euler angles i2, w, +

angles in the Mars centered satellite system will be denoted by
i, w, and Q.

Let Ni be the normal to the orbit plane of satellite

i and Li a unit vector in the direction of periapsis of satellite

i for i = 1, 2. 1In Appendix A it is shown that the following
equations relate the various Euler angles,

N1 X N2 . Ll - cos Q

il
o

1]
o

N1 X N2 . L2 - COS w (6)

Nl . N2 - cos 1 = 0.
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The angles i, w, 2 may be accurately estimated (see
Table 2) using the Mars centered satellite coordinate system.
Thus, Equations 6 are three equations in the unknowns il’ Wy

&l, 2, hl’ iy wy, wys Q,, and 62' However, from Equation 5

it is seen that Q. w. and that &j is a function of

5 cos“i.-1
J
J

" the six unknowns i

2 and ij for j = 1, 2. So the set of unknowns is reduced to
17 @y i2, W 92 and J2. The angles i, w, Q
are time dependent and given at least two distinct times, Equation
6 may be solved in the least squares sense for the six unknowns.
Thus, not only may the J2 term be estimated but also the Euler

angles with respect to the Mars centered satellite equatorial
coordinate system.

D. Multiple Doppler Link

Using a Doppler link between two satellites permits
accurate estimation of their relative orientations. If the
relative Euler angles are time dependent, the orientation with
- respect to the Mars centered satellite equatorial coordinate
system may be determined. This reference system is dependent
upon the orbit plane of satellite 1 and to determine the inertial
orientation of the orbit plane of satellite 1 earth-based tracking
must be used. The errors associated with earth-based tracking are
discussed in the next section. By using the results obtained
from the Doppler link between the two satellites only one param-
eter, namely ﬂl, need be determined from earth-based tracking.

The simulation shows that using two Doppler links permits a more
accurate estimation of Ql and of the other orbital elements than

using only earth-based tracking. Appendix B describes the pro-
cedure for estimating the standard deviation of Ql referenced to

the standard Mars centered equatorial coordinate system using
earth-based tracking and the orbital parameters determined in
the Mars centered satellite equatorial coordinate system.

NUMERICAL SIMULATION

In Reference 2 it was shown that the covariance matrix
for the least squares error function yields an estimate of the
standard deviations in estimating the orbital elements of a
Mars satellite. Under the assumption that the standard devia-
tion on each measurement is the same, the covariance matrix is

T 1-1

2 oF oF ; .
¥ 5% where F is the vector (pj . pj/lpj|)

and o is the standard deviation on each measurement. The square
root of the diagonal elements is the estimate of the standard
deviation for the respective components of the parameter vector X.

of the form o
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Thus, the attainable accuracies for earth-based tracking of either
Mars satellite and for a Doppler link between two satellites may
be determined by evaluating the respective covariance matrices

and computing the standard deviations.

A. Measurement Errors

In Reference 2 the following tabulation of velocity
errors was presented:

Source Value
Station Location .00308 m/sec
Speed of Light .000334 m/sec
Frequency Measurement .0068 m/sec
Ephemeris

Earth .03 m/sec

Mars .015 m/sec
A.U.

Earth .0199 m/sec

Mars .0162 m/sec

To estimate the error in earth-based tracking the
square root of the sum of squares of errors from all sources
was taken. The resulting error estimate is .0423 m/sec. This
compares with the lo error estimate of .03 m/sec, which did not
include the A.U. error, used by JPL in processing Mariner IV
data.

For a Doppler link between two satellites the dominant
portion of the above estimate due to errors in station location,
ephemeris and the A.U. is not present. The square root of the
sum of squares of the errors in speed of light and frequency
measurement is .00758 m/sec. Thus, the relative positions of
two satellites using a Doppler link may be computed more accu-
rately because of the smaller deviation than earth-based tracking
for equal tracking times. This will be demonstrated by the
results from a numerical simulation.

B. Simulation Results

The orbits chosen for study were as follows. The two
orbiting satellites have inclinations of 60° and 70°, periapsis
altitude of 2090 km, and a period of twelve hours. There were
1440 data samples taken at one minute intervals, which is two
orbits. For simplicity there was no Mars or Earth occultation
included in the model.

Table 1 lists the orbital elements referenced to the
Mars centered equatorial coordinate system and the standard
deviations for earth-based tracking. Table 2 lists the orbital
elements referenced to the Mars centered satellite coordinate
system and the respective deviations on each measurement.
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Table 3 shows the results obtained for J2 and the

Euler angles referenced to the Mars centered satellite equatorial
system by solving Equation 6. As was noted earlier the relative
Euler angles are time dependent and a minimum of two distinct sets
of tracking data are required to estimate the Euler angles. The
two sets used were determined by using two separate days of track-
ing data, as described above, taken one week apart. The standard
deviation for the relative Euler angles used in computing the

entries in Table 3 was 1 x 10_5. This value is an upper bound of

the standard deviations for the relative Euler angles in Table 2.
The estimation of the standard deviation of Ql, referenced to the

standard Mars centered equatorial coordinate systems, which is
determined from earth-based tracking of satellite 1, is also given.

Comparing Tables 1 and 2 it is seen that employing a
two way Doppler link permits more accurate determination of the
orbital elements than earth-based tracking. An increase in
accuracy of at least two orders of magnitude is expected because
of the decrease in standard deviation produced by eliminating
errors in station location, ephemeris, and A.U. There is an
~additional improvement of two orders of magnitude in estimating
the relative Euler angles and the gravitational parameter. The
additional accuracies are a result of the geometry of two orbiting

satellites. Table 3 shows that the J, term may be estimated to

4 places and that the inclination, i, to the Mars equatorial
plane and the argument of periapsis, «, may also be estimated
to 4 places by using the technique described earlier.

CONCLUSION

A Doppler link between two orbiting satellites provides
a means of accurately determining their relative positions. If
the planet is non-spherical, then the perturbation forces acting
on the satellites may be estimated and the orientation of the
satellite orbits with respect to the planet equatorial plane may
be determined. With this knowledge the orientation in inertial
space can be determined from earth-based tracking of either
satellite.

Simulation results show that the multiple link Doppler
system permits more accurate estimation of the orbital elements
than a single Doppler link between an earth-based tracking station
and an orbiting satellite. The numerical example presented should
be considered as a general order of magnitude estimate because the
standard deviations are functions of the geometry of the problem.
Only the J2 term was considered but the procedure described can

be extended to include higher order(ii3;5}cal harmonic terms.

1014-CLG-blm . L. Greer

Attachments



BELLCOMM, INC.

APPENDIX A

The equations relating a planet equatorial coordinate
system to the relative satellite coordinate system are derived
below.

The position of a satellite in a Keplerian orbit is
cos @ cos(w+f) - sin Q sin(w+f) cos i
r = |r]| sin @ cos(w+f) + cos 2 sin(uw+f) cos i (Al)
sin(w+f) sin i
where
a(l—ez)
1+e cos £
a = semi-major axis
e = eccentricity
T = time of periapsis
i = inclination
w = argument of periapsis
2 = longitude of ascending node
¢ = gravitational parameter
The orbital elements of satellite 1 will be subscripted
by 1 and those of satellite 2 subscripted by 2. In the satellite
coordinate system using the orbit plane of satellite 1 as the
fundamental reference plane, the X axis points in the direction
of periapsis. The z axis is in the direction and parallel to the

angular momentum vector. The y axis completes a right hand ortho-
gonal system.

The direction of periapsis, which corresponds to a
true anomaly of zero, is the vector

cos , cos w) sin Ql sin w, cos i

1 1 1
Ll =] sin Ql CoS wy + cos Ql sin w) cos i, (A2)

j in i
_Sin w; s 1
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The normal to the satellite orbit plane may be computed by
taking the vector cross product between the vectors whose true

. anomalies are - and -w + 90°. The normal Nl is seen to be
the vector

. sin 1l sin Ql

1 -sin il cos Q (A3)

2
n

cos i
1

Proceeding as above gives
cos 92 cos wz - Sin 92 sin w2 cos 12
L2 =} sin 92 Cos w, + cos 92 sin w, cos i, (A4)
sin w, sin i,
and
sin i, sin 02

N2 =| -sin i, cos 92 (A5)

c .
os 12

The vector Nl X N2 is the line of intersection between

the two orbit planes and is the line of nodes in the satellite
coordinate system. In particular, Nl X N2 points in the direction

of the ascending node of satellite 2.
Thus the longitude of the ascending node satisfies

cos Q = Nl b4 N2 . L, (A6)

the argument of periapsis satisfies

cos w = N1 X N2 . L2 (A7)

and the angle of inclination satisfies

cos i =N, . N

1 2° (A8)

The geometry of the problem is illustrated in Figure A.
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APPENDIX B

Let Mi be a vector of measured values which is to be

approximated in the least squares sense by a vector function
F(i,8,Y). It is assumed that 6 is a scalar variable and Y is a
vector of constants with known standard deviations. The least

squares error function is of the form I (Mi—F(i,e,Y))z. The value
i

of 6 which minimizes the least squares error satisfies the equa-

tion & igi%égizl (Mi—F(i,e,Y)) = 0. To first order the standard
i

deviations satisfy the equation.

aF(i,e,Y)Z] L2
28

2. ,.
[z 2 F(i,8,Y) (M;~F (i,0,Y)) + I 6

i 38 i

aF(i,0,¥)% 2 £32F (i,0,Y)

o + I [
26 M. . 0003y,
] y]

L (M, -F (i,0,Y))

1

oF (i,6,¥) 3F(i,0,Y), 2

36 Y - %.

+ I
1 J J

It is assumed that Iy is a constant o for all i.
i

Neglecting second order terms and solving for g yields

) 2 ) .
_ 2 . 3F(i,e,Y) 3F (i,6,Y) 3F(i,0,Y),2 2
9 = \/; L 36 + 10z 56 v, ) Oy,
j i j j
. OF(i,0,¥)°
56

i
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TABLE 1

Earth Based Tracking

Total Tracking Time 24 Hrs.
Sampling Rate is One Per Minute

Element Value lo Deviation
a; 12665.0 km .211 + 1
ey .5682599 .800 - 6
T1 0.0 hrs .360 - 5
il 60.0° .386 - 1
wy 0.0° .351 - 1
Q, 0.0° .445 - 1
b 5.5637 + 11 km>/hr? 278 + 9
a, 12665.0 km .470 + 1
e, .5682599 .127 - 5
T, 1.0 hrs .547 - 5
i2 70.0° 116 - 1
w, 140.0° .234 - 1
Q, 70.0° .36 -1

" 5.5637 + 11 km>/hr> 619 + 9
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TABLE 2

Two Satellite Doppler Link

Total Tracking Time 24 Hours
Sampling Rate is One Per Minute

Element Value lo Deviation
a; 12665.0 km .579 - 3
ey .5682599 .206 - 7
Ty 0.0 hrs .885 - 7
a, 12665.0 km .579 - 3
e, .5682599 .237 - 7
T, 1.0 hrs .915 - 7
i 97.79° .449 - 5
w 76.07° .969 - 5
Q 63.30° .946 - 5

" 5.5637 + 11 km>/hr? .763 + 5
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TABLE 3

Two Data Sets Determined

One Week Apart

Element Value lo Deviation
il 60.0° .264 - 3
wy 0.0° .678 - 4
i2 70.0° .100 - 3
W, 140.0° .267 - 3
92 70.0° .877 - 4
J2 .00192 .514 - 6
* -] —
Ql 0.0 .483 4

*Determined from Multiple Doppler Links
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- ABSTRACT

The gravitational field of a planet may be estimated
using Doppler data from a radio link between an artificial
satellite orbiting the planet and an earth-based station.

When two satellites simultaneously orbit the same planet, as
may well be the case with the 1971 Mariner spacecraft, the
question occurs, can additional information and accuracy be
obtained by providing a Doppler link between the two satellites.

Theory shows that satellite-to-satellite Doppler data,
without the earth-based link, can be used to estimate relative
satellite positions and the gravitational parameter, u, for a
symmetrical planet. For an oblate planet, this same data can
be used to estimate satellite positions relative to the equa-
torial plane, as well as the degree of oblateness. Adding a
Doppler link to earth allows the inertial coordinates of the
satellite orbit planes to be included in the estimate.

To investigate the question of additional accuracy
provided by the satellite-to-satellite Doppler data, a mathe-
matical simulation of the data reduction problem was carried
out on a digital computer. Under the particular assumptions
employed, it was found that for equal tracking times estimated
accuracies improved two to four orders of magnitude when the
satellite-to-satellite data was used in conjunction with earth-
based data, compared to earth-based data alone.

1969



